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Abstract

Many network services, such as video conferencing and video on demand, have
popularly used the multimedia communications. The attached hosts/routers are re-
quired to transmit data as multicasting in most multimedia applications. In order to
provide an efficient data routing, routers must provide multicast capability. In this
paper, a new cooling schedule in Hopfield neural network with annealing strategy is
proposed to calculate the shortest path (SP) tree for multicast open shortest path first
(MOSPF) protocol. The SP tree in multicast is built on demand and is rooted at the
source node. To facilitate the hardware implementation, the annealed Hopfield neural
network could be a good candidate to deal with SP problems in packet switching
computer networks. In addition, it is proved that the proposed new cooling schedule is
more suitable in all range of fixed temperature than the other demonstrated cooling
schedules in the experimental results. © 2000 Elsevier Science Inc. All rights reserved.
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1. Introduction

Routing algorithm refers to a process of finding appropriate path so that the
traffic can be relayed in some optimal ways. One important issue in routing
algorithms is the speed with which they can react to topology changes. Tra-
ditionally, TCP/IP uses routing information protocol (RIP) [1] in which the
routing decisions are based on the number of hops between source and desti-
nation. Many RIP systems have been replaced by a more powerful routing
method called the open shortest path first (OSPF) [2,3] protocol. RFC1583 is a
specification of the OSPF TCP/IP Internet routing protocol. OSPF is classified
as an interior gateway protocol (IGP). This means that it distributes routing
information between routers belonging to a single autonomous system (AS).
OSPF belongs to a class of link-state protocol in which routing information is
flooded through the entire network. It provides a dynamic and adaptive
routing mechanism to the topology change. The performance of most link-state
protocols depends heavily on the optimal path calculation. One classical work
called shortest path (SP) first algorithm proposed by Dijkstra [4] is popular in
many systems for the SP selection. Dijkstra’s algorithm works well, but it is
computationally intensive, especially for multicast routing.

Multimedia communications have been popular in many network services,
such as video conferencing, video on demand, and so on. In order to provide
efficient data forwarding, routing protocol must provide multicast capability.
An enhanced version of the OSPF, called the multicast open shortest path first
(MOSPF) protocol [3], was proposed to deal with the IP multicast routing.
RFC1584 is the protocol of multicast extensions to OSPF. MOSPF is a source/
destination routing in which each router must construct a tree rooted at the
source node, this is different from unicast OSPF, where the root is the com-
puting router itself.

An artificial neural network (ANN) is a system consisting of a number of
simple processors performed in parallel. The Hopfield neural network, a well-
known network, was proposed for solving optimization problems [5-9], and
many researchers have addressed the applications to the SP problems in
computer networks subsequently. Leung [10] demonstrated neural scheduling
algorithms for time-multiplex switches. Brown [11] also presented neural net-
works for switching problems. A new neural-network model, Routron, was
proposed by Lee and Chang [12] for routing of communication networks with
unreliable components. The continuous Hopfield neural network was applied
by Ali and Kamoun [13] to the optimal routing problem in packet-switched
computer networks to minimize the network wide average time delay.

In this paper, an annealed Hopfield neural network with a new cooling
schedule is proposed to MOSPF protocol to compute SP. The general goal is to
formulate the computer routing algorithm as an SP problem and apply the
annealed Hopfield neural network to solve it. The specific objective is to
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simplify the constrained-cost function so as to avoid the determination of
system-dependent parameters and to increase the performance. Furthermore,
we want to obtain a solution that is very close to the global minimum in a very
short time.

This paper is organized as follows. Section 2 demonstrates the discrete
Hopfield and annealed Hopfield neural networks for solving SP problem. In
Section 3, the annealing techniques are described. The different cooling
schedules are discussed and compared using an initial temperature in Section 4.
Section 5 discusses MOSPF SP tree. Section 6 presents several experimental
results to show that the annealed Hopfield network is suitable for the com-
putation of SP tree in OSPF routing domain. Section 7 specifies the inter-area
routing for neural-based MOSPF. Finally, Section 8 gives the discussion and
conclusions.

2. Shortest path computation with neural networks model

Let v; be the state at neuron i. Then the Hopfield neural network can be
modelled as

1 net; > (]i,

U,'(f'i‘ 1) = Ui(t) net; = (], (1)
0 net; < U;,

where U, represents the threshold for the i th node, and net; is defined by

net,‘ ==

J

1

n

By employing the Lyapunov theorem, the energy function can be defined as

1
E= ) : zj:viwijvj - Z_:Iivi + Z Uv;. (3)

J#1

It can be shown that the energy function is gradient decent and can reach a
stable state as system evolves.

In MOSPF routing domain, the topology of a single area in AS can be
defined as a directed graph G(N, 4), with n nodes and / arcs, each node in the
graph represents a router or transit network. Corresponding to each arc(x, i),
there is a nonnegative weight c¢(x, i), representing the cost from node x to node
i. To compute the SP from one source node to a group, the Hopfield model
with n x n array is proposed, each component in the array represents a router/
transit network. Each neuron in the array is identified by double indices (x, i),
where x and 7 indicate the row and column number, respectively. The neuron at
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location (x,7) shows the link from node x to i in the graph of a router/transit
network. Except neurons at the diagonal, only n(n — 1) neurons are used to
calculate in each array.

In order to characterize the neuron activities at location (x, i), we define the
neuron state v,; and c(x, i) as

b — 1 if the arc from node x to node i does exist,
* 10 otherwise.

To compute the SP using Hopfield model, the object function, which is similar
to Ali and Kamoun’s definition, can be defined as

A n n B n n n
Eobjigg 21 cx,-vx,-Jrzg ;vﬂ-f;v,-x

i#x i#x i#x
(x,0) £(d.s)

where the parameter A represents the minimization of the total cost. The B
term is zero if the number of incoming arcs equals the number of outgoing arcs.
The C term is zero if every output converges to {0,1}.

To compute optimal weight, we replace Egs. (1) and (3) by double indices
and let U; = 0 for all i, then

1 net,; > 0,
U/Y,'(t —+ 1) = Ux,‘(t) netx,‘ = 0,
0 net,; < 0
and
1< n n n n n
E==32 0 2. > vawayty =D D Luva (4)
x=1 1;)[1 y=1 //:‘1 =1 l:jxl
Let
OE  0Fy,
== 5
avxi avxi ’ ( )

such that E and E,; decrease at the same rate as v,; change. By comparing each
component in Eq. (5), we can obtain inter-connection weights and input bias as
follows:

Weiyj = Céxyéij — Béxy — Bélj + Bé]v + Bé,/
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and

A Cc D
[xi = _Ecxi(l - 5xa’éis) - E + Eéxdéiséij;

where

s 1 =,
Y710 otherwise.

Floreen and Orponen [14] indicated that to determine the attraction radius of a
stable vector in a discrete (binary) Hopfield network is a NP-hard problem. It
might hamper the convergence of the discrete Hopfield net to train with
complex and large data sets, and the Hopfield neural network may trap on to a
local minimum. In this application using a discrete Hopfield network, a neuron
(x,7) in a firing state indicates that the arc from node x to node i does exist. But
in the annealed Hopfield neural network, a neuron (x,i) in a probable state
indicates that the arc from node x to node i does exist with a degree of un-
certainty described by a probability function. The annealed Hopfield network,
which is a continuous model with probability function, can overcome the NP-
hard problem exhibit in binary Hopfield net.

3. Annealing techniques

Simulated annealing is a stochastic relaxation algorithm which has been
used successfully to resolve the optimization problems including computer
network topology problems [15], traveling salesman problems [16], circuit
routing problems [17], image processing problems [18,19], and clustering
problems [20]. Instead of the other optimization methods such as steepest
descent approach used in the Hopfield neural network, the simulated annealing
technique, which allows the search to move away from a local minimum, seeks
the global or near global minimum of an energy function without getting
trapped in local minimum. The simulated annealing technique had nonzero
probability to go from one state to another, moves temporarily towards a
worse state so as to escape from local traps. The probability function depends
on the temperature and the energy difference between the two states. With the
probabilistic hill-climbing search approach, the simulated annealing technique
has a better probability to go to a higher energy state at a higher temperature.

Although the simulated annealing method can yield the global minimum, it
is very time-consuming with asymptotical iterations. The annealed Hopfield
neural network, presented to the SP tree for MOSPF protocol, which incor-
porate the characteristics of the annealing strategy with a new cooling schedule
and the Hopfield neural network, can converge much faster than the simulated
annealing. Each row of this modified Hopfield network represents a source
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node x and each column represents a destination node i. The network reaches a
stable state when the Lyapunov energy function is minimized. For example, a
neuron (x, i) in a maximum probability state indicates the arc from x to node i
does exist. Based on Bibro et al. [21], each state v,; is looked upon as the
probabilities of finding the arc from node x to node i existing undergo random
thermal perturbations. The probability of the arc from node x to node i does
exist at a given temperature 7' conforms to a Boltzmann distribution

vy oc e AT (6)

Then the total input of net(x, i) net,; and mean field E,; can be calculated from
Eq. (4) to be

n n n
netxﬁ,- = —AEXJ = Z ZWXJ;%/'U};J + le‘,‘. (7)
y=1 j=1 x=1

The probability of the arc from node x to node i does exist and can be nor-
malized as follows:

e ExilT

Z;:l e BT

As the temperature is reduced, the training arc will begin to approach in a
feasible path that will minimize the total cost.

®)

Uxi =

4. Cooling schedule

In order to converge to a near global minimum in annealing process, a
feasible cooling schedule is required. Reaching thermal equilibrium at low
temperature might take a very long time. The search for adequate cooling
schedules has been the subject of an active research field for several years [22].
Geman and Geman [23] demonstrated that if the temperature is lowered at the
rate

Tl'ate - 10g<k+ l)a (9)

where Tj is a constant and k is the number of iterations, the algorithm will
converge to the set of states of least energy. Jalali and Boyce [19] presented that
the value of the constant 7; for which Geman and Geman were able to
guarantee convergence is in general very high, so that the convergence time
becomes impractically slow. Jalali et al. used a schedule very similar to that
of Geman and Geman given in Eq. (9), but with a steeper descent at higher
iterations as follows:
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Ty

log(k +1)* (10)

Trale =
Jalali and Boyce showed that the value of 7, in Eq. (10) has to be kept as small
as possible, so that the number of iterations can be held within a reasonable
limit. Unfortunately, the cooling schedules specified by Egs. (9) and (10) with
high value of Tj are too slow to be of practical use [24]. Kirkpatrick et al. [17]
proposed a cooling schedule which specified a finite sequence of values of the
temperature and a finite number of transitions attempted at each value of the
temperature. The decrement function of cooling schedule is defined by

Tae = (0)'Ty, k=12,..., (11)
where o (0.8 <2< 0.99) is a constant smaller but close to unit.
In this paper, a new decrement function of cooling schedule is proposed as
follows:

T; [f+ tanh(2)] Ty, k=1,2,..., (12)

1
S+
where o is a constant same as the one in Eq. (11) and f is another constant
which needs to be defined. f = 4 has been selected in this paper, Eq. (12) can
result in a faster decrement speed than those resulted from Eq. (11). The de-
crement results with initial temperature 7, = 4000 in 100 iterations are shown
in Fig. 1.

To demonstrate the power of annealed Hopfield model, we choose an
example from Ali and Kamoun’s paper [13] as shown in Fig. 2. While this
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!
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Temperature

6000 ;%g&
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2000 g~ g4t

0 ! ; i i i
0 20 40 60 80 100
Number of iterations  *:Eq.(9), xEq.(10), +Eq.(11), o:Eq.(12)

Fig. 1. The reduction process using different decrement functions described from Egs. (9)-(12) with
Ty = 4000 and 100 iterations.



24 J.-S. Lin et al. | Information Sciences 129 (2000) 17-30

0.415129035

0.72867189

0.377483

0.987736821
0.876102889

0.766675055 0.0369326319

0.455640405

Optimal solution = 1-2-5
Fig. 2. Testing example for the SP problem.

example is not suited for MOSPF routing, it is mentioned here for comparison
basis. First, randomly initialized neurons’states with a probability value from 0
to 1 at time ¢ = 0 fixed the source and destination nodes 1 and 5, respectively.
Then the minimum value for changed states 6 and weighting factors were set up
as 6 =0.00001, 4 =350, B=25, C=450, and D = 5000.

The training process was terminated if the minimum value for changed
states of the adjustment iterations is lower than 6. The optimal solution, path
1:1-2-5, can be obtained after 7358 iterations by Ali and Kamoun [13], but the
optimal result can be completed just after four iterations in an annealed
Hopfield neural network using the proposed cooling schedule.

In this paper, an iteration represents all the neurons’ states that are changed
one time. The convergence curve of energy function for src=1 and des=75 is
shown in Fig. 3. This network can rapidly converge to valid results that are
often globally optima. The experimental result with different cooling schedules
is shown in Table 1. In Eq. (9), an optimal solution can be obtained with a lot
of iterations in a high initial temperature, while an overflow error may be
trapped with a low initial temperature. Although an optimal path can be
completed during a few iterations with 7, = 50 in Eq. (10), an overflow error is
met with 7, = 5 and the optimal result was obtained with higher initial tem-
peratures after a lot of iterations. From experimental results, we find that
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Fig. 3. Energy curve using the proposed cooling schedule with T, = 450.

Table 1
The consumed iterations for Fig. 1 using different cooling schedule with distinct temperatures
Cooling schedules Temperatures
5 50 250 450
Eq. 9) Overflow 17 916 5535
Eq. (10) Overflow 17 53 315
Eq. (11) 4 11 69 125
Eq. (12) 4 9 36 44

Egs. (11) and (12) are suitable in different temperatures. However, Eq. (12)
can rapidly converge to the optimal path with a few iterations for all range
temperatures.

5. MOSPF shortest path tree

In multicast forwarding, packets are usually sent to multiple destinations.
The RFC 1584 algorithm is to construct a SP tree which span all nodes, and
then those nodes which does not belong to the destination group are pruned
out. However, the optimal path found by neural networks is for specific source
and destination nodes, thus the construction of SP tree must start from the
reverse direction. Different SPs for specific source/destination pairs must be
combined into a single tree.
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Current_node=root
For each source/destination pair
For each node in path[i]
If the router/transit network specified by path[i] is not marked
Mark it (Add this node to the tree)
Current node_down[jl=path[i] for appropriate |

Set current_node=pathl[i]

Fig. 4. The algorithm of updated tree.

To construct SP tree, each node in the tree has n — 1 downstream interfaces,
each indexed as node down(i), 1 <i < n. The number n represents the total
number of interfaces if the node is a router, or total number of attached routers
if the node is a multiaccess network. The multicast SP tree begins with root
node, usually this is the source network. Initially, all the routers/transit net-
works are not marked. After the SP has been found for a given destination by
neural networks, which we call it path[i] for i from 0 to N — 1, and path]0] is
always for root node, the tree will be updated as shown in Fig. 4. After all the
SPs for different destination have been computed, a multicast SP tree will be
constructed.

6. Simulation result

To illustrate the application of neural network, the single area routing
performed by annealed Hopfield network model in OSPF domain is examined
as shown in Fig. 5. Hosts belong to group A is represented as Hax, where x is
the index of the host. If the source node located at N4 is going to send a
multicast datagram to group A, then the OSPF database can be rewritten as
the matrix shown in Table 2. The SP tree for each group A member is listed as
follows:

Hal: R1-N1-R4-R5-N2
Ha2: RI-N1-R4-R5-N3
Ha3: RI-N1-R4-R5-N3
Following the algorithm in Fig. 4, the multicast shortest tree is shown in Fig. 6.

From experimental results, the optimal path Hal is found after 19285, 670,
166, and 51 iterations, while Ha2 and Ha3 can be discovered after 7564, 367,
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N5
R2
1
N1 R1
R3 p 1 Source
R4
N4
5
N7
N6
R6
1 Ha2
6
1 1
R5 N3 Ha3
Ha1
Fig. 5. The network architecture in OSPF domain.
Table 2
The OSPF database
From To
N1 N2 N3 R1 R2 R3 R4 R5 R6
N1 0 0 0 0 0
N2 0 0 0
N3 0 0
R1 1
R2 1
R3 1
R4 1 5
R5 1 1 6

R6
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R1

R4

RS

Fig. 6. Multicast shortest tree.

78, and 30 iterations with Ty = 450 using Eqgs. (9)-(12), respectively. These
results prove that the new cooling schedule is a robust one, which can rapidly
converge to an optimal solution in the SP calculation problem of MOSPF
using an annealed Hopfield neural network.

7. Inter-area routing

In many situations, the source and destinations are not in the same area,
thus the OSPF must perform inter-area routing. Generally, the construction of
SP tree for inter-area forwarding is the same as we have done for intra-area
routing. Each router in an area computes the SP tree for that area, and con-
structs its forwarding cache. On the other hand, area border routers compute
the SP tree for each attached area, and combine them into their forwarding
cache. But there are two exceptions in the intra-area routing. The first, when a
router receives a datagram with its source address located in the same area as
this router, then we need to compute the shortest path to all wild-card multi-
cast receivers since some of the group members are outside the working area
and thus the destinations are unknown.

For the second case, the source node is in different area. Just as specified in
[3], we use the summary link to create the routing topology, and all the cost
values used for neural network computations are in reverse direction, that is, all
cost values are from destinations toward source instead of from the source node.

8. Discussion and conclusions

In this paper, a two-dimensional annealed Hopfield neural network with a
new cooling schedule for SP computation of MOSPF has been presented. The
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proposed cooling schedule in the annealed Hopfield model appears to converge
rapidly to the optimal solution. In addition, the proposed algorithm conforms
to Internet standard ([2,3]) for both unicast and multicast forwarding, and it
can coexist with other standard OSPF/MOSPF routers. Moreover, the de-
signed neural-network-based approach is a self-organized structure that is
highly inter-connected and can be implemented in a parallel manner. It can
also be easily designed for hardware devices to achieve very high-speed
implementation.
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